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SUMMARY. 

The analysis begun in the previous paper of a general model for liquid chroma- 
togmphy ina column is continued here. Exlglicit solutions are obtained for small-zone 
and-ltige-zone non-equilibrium chromatography models both without and with dif- 
fusion; The effects on ~~.moments.of-the.eiution protile of a distribution function 
which_characterizesmoltiultir heterogeneity (such as molecular size) or bead non- 
uniformities-areanaljzed. A first-order correction to the mean value of the elution 
profile when sorption-desorption kinetics are:concentration dependent is derived_ 

Numerical. simulations of tlie elution. proHe_ indicate the following. (1) The 
peak and. mean may differ by aas-much- as -a factor of two for slow mass transfer 
(k, 5 0.01). Since the-mean is uniquely determined by the equilibrium constant 
but the-peak is not, the use of the peak to characterize the equilibrium constant 
for. broad asymmetric profiles may lead ;to serious errors- (2) When the rate of mass 
transfer from the void ta- penetrable voliunes becomescomparable to z&, a second 
@ will.deyelop in_the_elution profile; This happens even for a completely homoge- 
neouspopul&i6rrunderGieal’conditions, and is caused bymoleculesthat traverse the 
colhmn:witliout- penetrating beads. The dispersion of this peak is therefore deter- 
minedlentirely by ef&cts other than mass-transfer; (3) In-the non4itiear regime (Le., 
when mass transferrates are concentration dependent); the equilibrium constant is; in 
general, no longer uniquely determined by the mean. Uniqueness is, however, ob- 
tai&d!ih, the limit. as both mass transfer coefficients become-very small, with their 
ratio remaining_ moderate. 

INTRODUCTION 

lrrtkepreviaus papeti we developed a non-equilibrium theory of chromatogra- 
&iy whiclGnclnded’diff usion, and: we &owed _ how the_ so@iotiesorption kinetic 
parameters can be estimated from-.the moments of tlie elation profilit. Expressions 
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were derived for the mean, variance and skewness of the elution profile under ideal 
conditions of homogeneous molecules, uniform bead packing, and size- and con- 
centration-independent rate constants_ Here we extend that theory by considering 
other aspects of liquid column chromatography including nonideal conditions. The 
fundamental results derived here and in ref. 1 provide a basis for further quantitative 
development of chromatography as a method for thermodynamic and kinetic charac- 
terization of chemical reactions2m3. 

Soiutions involving modified Bessel functions are given for both small-zone 
and large-zone chromatography models without diffusion. These solutions, together 
with a Gaussian keme1, are used to obtain solutions to a chromatography model with 
diffusion. Numerical simulations of the elution profile indicate that the peak and 
mean may differ by as much as a factor of two for slow mass transfer into the beads. 
Since the mean is uniquely determined by the sorption-desorption equilibrium con- 
stant, but the peak is not, the use of the peak to characterize the equilibrium constant 
for broad asymmetric prof3es can lead to serious errors. For some low transfer rates 
the profile has two peaks. This happens even for homogeneous molecules under ideal 
conditions and is caused by molecules that traverse the bed without penetrating the 
beads. The dispersion in the first peak is determined by effects other than mass 
transfer. 

We then consider heterogeneity or non-uniformity in the bed and in the mole- 
cules. When equilibrium constants are distributed, the expressions for the mean eiu- 
tion time involve the average equilibrium constant (or the average penetrable 
volume). If the sorption rate is constant, then the variance of the elution profile is 
proportional to the sum of the square of the average equilibrium constant and the 
variance of the distribution. A chromatography model with non-linear sorption- 
desorption kinetics is considered. When the mass transfer rates are concentration 
dependent, the sorptiondesorption equilibrium constant is no longer uniquely de- 
termined by the prome mean. However, uniqueness is obtained in the limit as both 
mass transfer coefficients become small, with their ratio remaining moderate. Graphs 
reveal the remarkable dependence of the mean of the elution profile for the non-linear 
model on the mass transfer rates. 

A CHROhL~TOGRAPHY MODEL WITHOUT DIFFUSION 

Solutions for a very thin soiute zone 
The model discussed in ref. 1 consisted of the following diffusion-reaction- 

convection system 

ZP 
T- 
Cf 

CD2 
_ 

+uP-kg;k_,q 
z_r 

c’q t 
= = ~1p - k_,q 
dt 

togeiiher with appropriate boundary and initial conditions, where p and q are the 
probabilities per unit column length of finding solvent molecule-s at position x at time 
t, D is the diffusion constant, u is the convection velocity, and k, and k_, are the rate 
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constants for penetrance of, and exit from, the beads. The bottom of the bed is at _. = 
0 and the top is at x = h (see ref. 1 for notation). These equations were solved for 
quantities related to the moments of the density functions p and 4_ In particular, we 
obtained expressions for the mean, variance and skewness of the elution profile. 

To obtain an expression for the entire profile, first consider eqns. 1 and 2 
without difFusion (D = 0) subject to initial conditions 

p(x,O) = 6(x - h) 

0(x,0) = 0 x f h 
(3) 

The number of molecules and the current must be continuous at the top of the bed so 
that 

P&4 = 0 t>o (4) 

Instead of including the instantaneous source in the initial conditions (eqn. 3), it 
could have been included in eqn. 1 as a term b(s - 11) 6(r) or in the boundary 
condition (eqn. 4) as p(h, t) = 6(u, t) for t 2 0. 

For the purpose of finding a solution, we assume that there is no solute buildup 
at the bottom of the bed; i.e., we assume that flow continues as thou& the bed were 
extended helow x = 0. We thus take the eluted current (molecules per unit time) at 
the bottom of a bed of height h as ztA,C(O,t) = ulp(O,t). In this equation, 1is the total 
number of solute molecules and p(_r,r) is the solution of the initial boundary value 
problem with a uniform bed on the semi-infinite interval -CC -C x < Iz, with p 
approaching zero as x approaches - 00. 

Now define d = it + _K - h and e = (k, k__,/u’)(h - x); then the solution 
(Appendix A) of eqns. I-4 is 

p(s,t) = exp[--k,(lz - _r)/u][G(d) + H(b) exp( -k_,A/z~) Jeld I, (2&i)] 

(5) 

q(w) = (k,/u) exp[-k,(/z - X)/U] W(d) exp( -k_,d/u) I&a) (6) 

where the Heaviside function H(d) is 0 for d c 0 and 1 for d 2 0, and the symbols I, 
and I1 are modified Bessel function&. Thomas’ found similar solutions and also 
found asymptotic approximations. Giddings and Eyrin$ and Giddings’ obtained 
similar solutions using a stochastic (random walk) approach. 

Solutions for a large solute zone 
A large zone corresponds to an initial layer of macromolecules which is thick 

enough so that it cannot be considered an instantaneous source. To obtain a solution 
for this case we again begin with the initial boundary value problem without diffu- 
sion. The partial differential equations in the hed are eqns. 1 and 2 with D = 0, and 
the initial conditions are 

p(_u,O) = 0 4(X,0) = 0 O<X<h (7) 
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If the thickness ofthe initial layer of molecules is T, then the boundary condition at 
the top of the bed is 

g(h,t) = [1 - H(ut - 7)1/T (8) 

for t p 0. 
The foliowing solutions of the initial boundary value problem described above 

are found by Laplace transforms (Appendix A)_ 

As T approaches 0, eqns. 9 and 10 approach eqns. 5 and 6. Using eqn. 9 in the 
definitions of-&e moments in ref. I, we find that the mean and variance of the elution 
profIle agree with eqns. 19 and 20 in ref. 1. 

A MODEL WITH DIFFUSION 

The procedure for finding a solution including diffusion-can be understoodbest 
by considering a molecular interpretation of eqns. 5 and 6. In particular, we note that 
p(x,t) could have been obtained by fmding the probability that a molecule at (x;z) had 
moved freely for a total time r < t, multiplying that probability by the conditional 
probability that a molecule moving for time T will be at X, and then integrating over 
z’,~_ In the absence of diffusion, the kernel in the integrand, i-e_, the probability thata 
molecule moving freely:for total-time 7: is at x is-b(r - (It - X)/U) since motion’by 
convection is completely deterministic. This procedure uncoupies reaction frommove- 
ment down the bed; something that can always be achieved for a linear system. 

If now, ratherthan allowing movement only by convection, we include diffu- 
sion, then the kernel will be Gaussian. In particular, we take 

G(_r,z) = (4x&)-‘?exp[-(ur +- _\: -. h)‘/4fk] (IL) 

where G(_r,r) is the probability that a molecule having moved freely for r d t, willbe 
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at x The diEusion constant D should be interpreted broadly so that it not only 
inciudes the simple Brownian diffusion one would find in a homogeneous medium, 
but also includes eddy diion and velocity profile effects’_ 

To tid the probability density P&t) for free molecules at (-u,t), eqn. 11 must 
be multiplied by the probability that a molecule, having moved freely for r < t, will 
be free at (XJ) and the product must then be integrated over z from 0 to t The 
probability density Q(x,t) for bound moiecules at (x,t) is found similarIy_ But we 
already know the solutions for the reactive probabilities since eqns. 5 and 6 are simply 
those solutions integrated over a b-function kernel. Hence we tind that the solutions 
to the model with diffusion are 

P(X,f) = i G&,7) Poi - m,t)uctr 
0 

More explicitly, 

(12) 

(13) 

(14) 

Q(x,r) = k, i (4&z)- l/2 exp 
[ 

(u7 f x - h)’ 
- 

4DT 
-&r-k_,(t--xr) x 

0 1 

The functions P and Q above satisfl the differential equations 1 and 2, the initial 
conditions (eqn. 3) and boundary conditions I’(& oo,t) = 0, Q( + co,?) = 0. 

The main approximation in eqns. I4 and 15, for which we expect the error to be 
neghgiible, is that they hold on the interval -cc c x -E co, whereas the chromato- 
graphic bed only occupies 0 < x < h. The contribution from molecuhzs that move 
above h is expect& to be only a second-order effect, since only a small fraction of 
soiute will ever be above h when movement down the bed is dominated by convection. 
Similarfy we expect the concentration of molecules just above x = 0, with no bed 
beneath x = 0, to be essentially the same as it would if the bed continued below x = 
0. Approximate solutions to the. farge-zone problem with diffusion can be found as 
above- by using eqns. 9 and 10 and the Gaussian kemel~ (eqn 11) 

PEAKS AND MJZANS OF -i-HE ELUTION PROFILE 

The number of molecules per second living the bottom of the -bed is the 

elution profife rcP(O,t) 
SPY 

t D - (0,~) with f-‘(~,t) given by eqn. 14. From this elution 
&- 
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profile we can assess the approximation involved in using the peak of the profile 
rather than the mean to obtain the equilibrium constant. 

A number of investigators have shown l*glo that the mean depends only on the 
equilibrium constant K = k,/k_,. On the other hand, the peak is not uniquely 
determined by K, but depends on k, and k_ I separately. This is shown clearly in Fig. 
1, where&e time at which the peak occurs is plotted as a function of k,. The parame- 
ters in this example are chosen so that the mean always occurs at 2CNO sec. The peak 
and mean di6er by less than 5% for k, > 0.015 set-‘, but as k, drops the peak 
decreases rapidly so that it is within a few percent of its limiting value of 1000 set at k1 
= 0.002 set- I_ In the low k, limit, the mass transfer rate k, is sufficiently low relative 
to the time for a mobile molecule to traverse the bed that essentially no adsorption 
OCCUTS. 

f 
1 

: 
.r 

Fig_ 1. Tbt profile peak position is a futxtion of the mass transfer rate (k, or k_,) with K held constant. 
Ihe _oroliie mean, on the other hand, is de terminedonlyby~Cem~isat2000sec.K= l,h]u = 1000 
-xc, D = 0. 

As the low k, limit is approached an interesting effect arises: the profile begins 
to develop a second peak (Fig. 2). Mathematically, this peak arises from the tirst term 
in eqn. 14; physically it represents thos& particles that traverse the bed with no 
adsorption. The theoq predicts that such a peak can be produced or eliminated by 
changing h/u so that it either approximates or exceeds S/k,. The rate constant kl can 
be determined b;z methods discussed in ref- I. Under usual circumstances one would 
want to perform separations so that an “artifactual pe&” does not arise. However, if 
the second peak can be produced as readily as &e theory sugge+, it might-be IS&IL 
Its breadth 6 free From mass transfer contributions and it therefore allows an assess- 
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n 
Fig. 2 The eIution profile of a completely homogeneous molecular population under ideal conditions 
kcomes biodal when the rate of mass transfkr from the void volume to interior bead volume is compsra- 
bIetou/h_D= 10~6cm’/sec,u=0.01cnr/sec~=~Ocm,K=1.(a)k,=4x 10-3sec-1;(b)k, =5 x 
10-S see-I_ 

ment of the relative contribution of diffusion and mass transfer to the overall profile 
CiiSpXSiOIl. 

HETEROGENEITY 

The models formulated and analyzed here and in ref. 1 assume that the mole- 
cules are uniform in size, structure andweight and that the beads (gel particles are 
uniform in their packing, size and structure. Here we examine the effect of non- 
uniformities on the moments of the passage time. Assume that the equilibrium con- 
stant K is distributed with probability density function. n(K). Note that the distri- 
bution of Kcould be due to a distribution of kr or of k_ r or of both. The average over 
the distribution of K of thejth moment of the passage time at position x is defined as 

m 

2-j = j n(K) 1 r’[up(x,t;K) 
0 0 

+- D$,r;K)] dr dK (16) 
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For a small-zone experiment for which diEtsion .is negligible, the analogs of the 
e.xpresSons in ret 1 for the moments are 

-If the main sources of equilibrium constant heterogeneity are non-uniformities 
in the beads or in their packing, then the average equilibrium constant R and the 
average penetrable volume VP depend only on the coiumn conditions. As long as the 
same column is used under the same conditions {for example, during mohxular 
wei&t eahbration and determinati on) this non-uniformity does not SigniGcantiy 
affect the results since it is the same for ah moiecukzs passing tb.rou& the column 

If the main sources of eqniiibrium constant heterogeneity are non-uniformities 
in the size, structure or weight of the molecules, then Rand vr, are avera- over these 
molecuks_ If the sorption rate k, is always the same for the molecules, but the 

desorption rate k_, varies because of differences in the rnalec~~ then (K/k_,) = 

F/k,. In this casrz: if’ k, is known (e-g_ from another experiment), then the second 
moment Z can be estimated from the observed variance of the dution pro&_ Hence 
the variice IV, of the elution profile sati&es 

(19) 

where-the fu-st term in the brackets is de square of the mean of the equilibrium 
constant distribution and the second term is the variance. Thus Xk, is constant, both 
the.means and the variances of the distribution can be estimated_ 

NON-LmEAR KIFE-IKS 

Consider the chromato_wphy model without cWTusion for a thin solute zone 
described earlier. Assume that the sorption-desorption kinetic rates decrease near 
saturation, te, the kinet.ics are no lonsr linear. Then the eqns. 1 and 2 become 

vzhe~c the parenthesized factors reflect satnration e&cts_ The mobile-and stationzry 
&ase concentrationsC and B are less than-the uxrespon&ng maximum conccntm- 
tions.C? and B”_ Since p = CAJI and 4 = -BA&we%nd 
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C/C= = ph(If_C=A,,h) (22) 

where Aoh and A& are the void and penetrable volumes, respectively. If the total 
number of molecules I is much less than the mokcular capacities CFA,h and PA@, 
then a suitable small parameter is 

E = I/PA,h ‘(24) 

Since K = VJV,, then 

where u = cP/Bm is a constant near I since the satnrationconcentration c” and E” 
are nearly equal. 

Let the expansion of p and q in powers of E be 

_q = qo + q,E -i- q+’ -*- 

Substituting eqn. 26 into eqns. 20 and 21 modified to include E by using eqns 22-25, 
and equating the powers of E, we find that p. and q. are given by eqns. 3 and 4 and pl 
and q1 satisfy 

%I1 
- = k, @I dt 

-hp@-k_l(ql -$.$j) (27) 

_p~(_r,o) = 0, q1(x,O) = 0, p1(h,t) = 0 

The first-order approximation to the me;LEI elution time is 

n-r, = j tu[p,(O,t) +- .spI(O,f)]df = (1 + K)UZ/U) t E$ tz&(O,t)dt (28) 
0 

Following the procedure in the section “The moments of the elution protZey’ 
in ref_ 1, we find 

(29) 
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Substituting eqns_ 5 and 6 for p. and q. in eqn. 29 and using identities involving 
integrals and serks”_ we obtain 

a tupl(O,t)dt = - (h/u) II %.&l _ e-‘=) 
1’ 

- aemzz + ,le-"l,(w)dw - 
0 

(-> 

ze -‘=Z: (4%) - I a e-x’Zo(~v)dw 1 (30) 

where 3~ = k,lz./u and p = A-_ ,h_lu. 
Numerical evaluation of the integral in eqn. 30 indicates that it is well ap- 

proximated, over a wide range of ;L. by 

%e -“lo&-)d,r* z - 0.1895 -I- O_S55& (31) 

in particular, this approximation holds to within 6 % at Q = 0.2; 1% at z = i, and it 
becomes increasingly better as z increases. Therefore eqn. 28 can be written as 

Lci, = (1 t K) (h/u) - ~(h/u) 
-i 
$f(! - ewz*) - aee2= 

2 
--e 

2 
-‘=Z; (6) - $1 - a) (0.1895 - 0.855 ,/@ 

> 

(32) 

If 3~ and fi are small, with K remaining moderate, the result simplifies to 

Ai, z (1 i- K) (h/u) - dzK - = [I f K(l - &)](h/Zf) 
U (33) 

Combining eqns. 28 and 30 we tid that the first-order approximation to the relative 
error in neggecting the non-linear kinetics is given by 

(34) 

Eqn. 32 predicts that in the non-linear re_@me, the elution profile mean depends 
sepamtely on the mass transfer rates k, and k _ Is not just on their ratio K. Thus with 
K held lixed, changes in a = klh/u can cause changes in the mean (see Fig. 3). The 
percentage difference between the non-linear and linear means is usually small, gener- 
ally not more than 100~. The maximum percentage difference between the non-linear 
and linear means is shown in Fig -4. Note that the linear mean is usually larger than 
the non-linear mean. More interesting are the maxima and minima that occur in some 
parts of Fig. 3. Fig. 3 clearly illustrates that when the sorption-desorption kinetics are 
non-linear, the mean is not uniquely determined by thi equilibrium-cons&t K, but 
depends on the soqtion and desorption rate constants k, and k_,. 
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(Combrued on p. 294) 
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l(y50 
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-4 
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c 

Eg_ 3_ The position of the mexs in t& m-I&m probI= is not uniqtiy determined by K. a = 1 and 
L = 0.1 in a.~ &U-KS (a) K = 2, (b) K = 05. (c) K = 0.08, (d) K = O-01- 
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--6(x - h), Lp(h,.s) = 0 

The sofution of the in&i& value probkm (eqn_ 35) is 

L&J) = i ex P[ --R,(h - xl- s(k - x) k,k_,(h - x)- - 
u u + u(s + k-1) 1 ; 

(35) 

(36) 

(37) 

(38) 

(39) 

Using eqns_ 3639 with the usual rules for Laplace transforms, we find t-he solution 
given by eqns. 5 and 6_ 

For the large-zone model 

Using eqns. 36 and 3840 and standard Laplace transform formulas, eqns. 9 and 10. 
are obtained_ 
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