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SUMMARY:

The analysis begun in the previous paper of a general model for liquid chroma-
tography in:a column is continued here. Explicit solutions are obtained for small-zone
and-large-zone non-equilibrinm chromatography medels both without and with dif-
fusion: The effects on the moments. of the elution profile of a distribution function
which_characterizes molécular heterogeneity (such as molecular size) or bead non-
uniformities-are analyzed. A first-order correction to the mean value of the elution
profile when sorption—desorption kinetics are-concentration dependent is derived.

Numerical simulations of the elution. profile.indicate the following. (1) The
peak and mean may differ by as-much-as-a factor of two for slow mass transfer
(k, < 0.01). Since the-mean is uniquely determined by the equilibrium constant
but the-peak is not, the use of the peak to characterize the equilibrium constant
for. broad asymmetric profiles may lead to serious errors. (2) When the rate of mass
transfer from the void to penetrable volumes becomes.comparable to uf#, a2 second
peak will.develop in the elution profile: This happens even for a completely homoge-
neous-populationrunderideal conditions, and is caused by-molecules that traverse the
colimn: witliout- penetrating beads. The dispersion of this peak is therefore deter-
mined 'entirely by effects other than mass-transfer: (3) In-the non:linear regime (i.e.,
when mass transfer rates are concentration dependent), the equilibrium constant is, in
general, no longer uniquely determined by the mean. Uniqueness is, however, ob-
tained:in.the limit. as both mass transfer coefficients become. very small, with their
ratio remaining moderate.

INTRODUCTION
Inthieprevious paper! we developed a non-equilibrium theory of chromatogra-
phy which:included diffusion, and‘we showed how the sorption-desorption kinetic
parameters can be estimated from:the moments of thie elution profile. Expressions
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were derived for the mean, variance and skewness of the elution profile under ideal
conditions of homogeneous molecules, uniform bead packing, and size- and con-
centration-independent rate constants. Here we extend that theory by considering
other aspects of liGuid column chromatography including nonideal conditions. The
fundamental results derived here and in ref. 1 provide a basis for further quantitative
development of chromatography as a method for thermodynamic and kinetic charac-
terization of chemical reactions®-.

Solutions involving modified Bessel functions are given for both small-zone
and Jarge-zone chromatography models without diffusion. These solutions, together
with a Gaussian kernel, are used to obtain solutions to a chromatography model with
diffusion. Numerical simulations of the elution profile indicate that the peak and
mean may differ by as much as a factor of two for slow mass transfer into the beads.
Since the mean is uniquely determined by the sorption—desorption equilibrium con-
stant, but the peak is not, the use of the peak to characterize the equilibrium constant
for broad asymmetric profiles can lead to serious errors. For some low transfer rates
the profile has two peaks. This happens even for homogeneous molecules under ideal
conditions and is caused by molecules that traverse the bed without penetrating the
beads. The dispersion in the first peak is determined by effects other than mass
transfer.

We then consider heterogeneity or non-uniformity in the bed and in the mole-
cules. When equilibrium constants are distributed, the expressions for the mean eiu-
tion time involve the average equilibrium constant {or the average penetrable
volume). If the sorption rate is constant, then the variance of the elution profile is
proportional to the sum of the square of the average equilibrium constant and the
variance of the distribution. A chromatography model with non-linear sorption—
desorption kinetics is considered. When the mass trapsfer rates are concentration
dependent, the sorption—desorption equilibrium constant is no longer uniquely de-
termined by the profile mean. However, uniqueness is obtained in the limit as both
mass transfer coefficients become small, with their ratio remaining moderate. Graphs
reveal the remarkable dependence of the mean of the elution profile for the non-linear
model on the mass transfer rates.

A CHROMATOGRAPHY MODEL WITHOUT DIFFUSION

Solutions for a very thin solute zone
The model discussed in ref. 1 consisted of the following diffusion-reaction—

convection system

- -~ -~
cp ¢ p op

= = = —k,p + k_, ; 1
&t Déxz tu Ax P 19 1)
Cq

— =k,p — k_ 2
ot P 19 3]

together with appropriate boundary and initial conditions, where p and ¢ are the
probabilities per unit column length of finding solvent molecules at position x at time
t, D is the diffusion constant, u is the convection velocity, and &k, and k_, are the rate
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constants for penetrance of, and exit from, the beads. The bottom of the bed is at x =
0 and the top is at x = 4 (see ref. 1 for notation). These equations were solved for
quantities related to the moments of the density functions p and q. In particular, we
obtained expressions for the mean, variance and skewness of the elution profile.

To obtain an expression for the entire profile, first consider eqns. 1 and 2
without diffusion (D = 0) subject to initial conditions

p(x0) = o(x — h)
(E))

a(x,0) =0 x#Fh

The number of molecules and the current must be continuous at the top of the bed so
that

plht) =0 t>0 @

Instead of including the instantaneous source in the initial conditions (eqn. 3), it
could have been included in eqn. 1 as a term 6(x — #) d(2) or in the boundary
condition (eqn. 4) as p(h, 1) = d(u, 1) for ¢ = 0.

For the purpose of finding a solution, we assume that there is no solute buildup
at the bottom of the bed; i.e., we assume that flow continues as though the bed were
extended below x = 0. We thus take the eluted current (molecules per unit time) at
the bottom of a bed of height /1 as uA4,C(0,1) = ulp(0,7). In this equation, 7 is the total
number of solute molecules and p(x,¢) is the solution of the initial boundary value
problem with a uniform bed on the semi-infinite interval —oc < x < A, with p
approaching zero as x approaches — oo.

Nowdefine 4 = ur + x — hand g = (k; k_,/u®*)(h — X); then the solution
(Appendix A) of egns. 1-4 is

p(xan) = exp[—ky(h — x)/u][5(A) + H(4) exp(—k_,A[u) \/o/4 I,(2\/e)]
©)
q(x,1) = (ky/u) exp[—k,(h — x)[u] H(A) exp(—k_,4/u) Io(2\/04) (6)

where the Heaviside function H(4) is 0 for 4 < 0 and 1 for 4 > 0, and the symbols 7,
and [/, are modified Bessel functions*. Thomas® found similar solutions and also
found asymptotic approximations. Giddings and Eyring® and Giddings’ obtained
similar solutions using a stochastic (random walk) approach.

Solutions for a large solute zone
A large zone corresponds to an initial layer of macromolecules which is thick

enough so that it cannot be considered an instantaneous source. To obtain a solution
for this case we again begin with the initial boundary value problem without diffu-
sion. The partial differential equations in the bed are eqns. 1 and 2 with D = 0, and
the mitial conditions are

p(x,0) =0 g(x0) = 0 0<x<h %)
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If the thickness of the initial layer of molecules is T, then the boundary condition at
the top of the bed is

phy =1 — H(ur — )T 3

fort = 0.
The following solutions of the initial boundary value problem described above
are found by Laplace transforms (Appendix A).

-

0 A <O

1 —ky(h — x 4 —k_,w 0
—expl ———— |11 + ZEa) Je e Jewdw|0 < 4 <
Texp[ " ][1 gexp ” - L2 /ow)dwl]0<Aa4<T

plxa) =
Lexp[ﬂ:) [ e‘p(_ ‘1") /—1I (0,/9;;)du] 4>
T u 4 —-T
) 9
[ 0 4A<0
. _r . A
"_xexp[i(”_ﬁ] fex ( 1“’) I2J/ew)dw 0<4<T
Tu u o
q(x,0) =

k —ky (B — > 2 —k_,w
_xexp[_L_ﬂ] { exp(iul_“_) LQJewydw 4=>T
4 -7

| Tu u (10)
As T approaches 0, eqns. 9 and 10 approach egns. 5 and 6. Using eqn. 9 in the
definitions of the moments in ref. 1. we find that the mean and variance of the elution
profile agree with eqns. 19 and 20 in ref. 1.

A MODEL WITH DIFFUSION

The procedure for finding a solution including diffusion can be understood best
by considering a molecular interpretation of eqas. 5 and 6. In particular, we note that
p(x.r) could have been obtained by finding the probability that a molecule at (x;z) had
moved freely for a total time t < ¢, multiplying that probability by the conditional
probability that a molecule moving for time v will be at x, and then integrating over
7%7. In the absence of diffusion, the kernel in the integrand, i.e., the probability that.a
molecule moving freely for total-tme 7 is at x 1s-8(r — (h — x)/u) since motion by
convection is completely deterministic. This procedure uncouples reaction from maove-
ment down the bed; something that can always be achieved for a linear system.

If now, rather than allowing movement only by convection, we include diffu-
sion, then the kernel will be Gaussian. In particular, we take

G(x,7) = (AuD1t) Y exp[—(ur + x —. H)?/4D1] ’ (1Y
where G(x,7) is the probability that a molecule having moved freely for T < ¢, will be
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at x. The diffusion constant D should be interpreted broadly so that it not only
includes the simple Brownian diffusion one would find in a homogencous medium,
but also includes eddy diffusion and velocity profile effects’.

To find the probability density P(x,f) for free molecules at (x,f), eqn. 11 must
be multiplied by the probability that a molecule, having moved freely for 7 < ¢, will
be free at {x,7) and the product must then be integrated over t from 0 to £ The
probability density O(x,f) for bound molecules at (x,?) is found similarly. But we
already know the solutions for the reactive probabilities since eqns. 5 and 6 are simply
those solutions integrated over a d-function kernel. Hence we find that the solutions
to the model with diffusion are

P(x,p) = j' G(x,7) p(h — uz,Dudr (12)
[1]
o(x,0) = { G(x,7) glh — ut,f)udc (13)
4]
More explicitly,
t _ 2
Pt = G(x,De " + j (anD7)~ 3 exp[— ("t—+4;;i kT —

k_,(t — t)] x 'l‘ LS ( \/_, _T(t — ‘L‘))lldl‘ (14)

(et + x— h)*
4Dt

10( kot — t))dr (15)

The functions P and @ above satisfy the differential equations 1 and 2, the initial
conditions {eqn. 3) and boundary conditions P(+ o0,f) = 0, @(+ o0,7) = 0.

The main approximation in egns. 14 and 15, for which we expect the error to be
negligible, is that they hold on the interval — o0 < x < o0, whereas the chromato-
graphic bed only occupies 0 < x < A. The contribution from molecules that move
above A is expected to be only a second-order effect, since only a small fraction of
solute will ever be above 4 when movement down the bed is dominated by convection.
Similarly we expect the concentration of molecules just above x = 0, with no bed
beneath x = 0, to be essentially the same as it would if the bed continued below x =
0. Approximate solutions to the large-zone problem with diffusion can be found as
above-by using eqns. 9 and 10 and the Gaussian kernel (eqn. 11).

O(x,t) = k&, f(47th)'”2 exp| —kyr—k_(z — ‘t)] x
0

PEAKS AND MEANS OF THE ELUTION PROFILE

The number of molecu!&e per second Ieé.ving the bottom of the .bed is the
elutxon profiic uP(O t) + D (0 f) with P(x,f) given by eqn. 14. From this elution
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profile we can assess the approximation involved in using the peak of the profile
rather than the mean to obtain the equilibrium constant.
A number of investigators have shown!51° that the mean depends only on the

eqguilibrium constant K = k;/k_,. On the other hand, the peak is not uniquely

determiried by K, but depends on &, and k_, separately. This is shown clearly in Fig.
1, where the time at which the peak occurs is plotted as a function of k,. The parame-
ters in this example are chosen so that the mean always occurs at 2000 sec. The peak
and mean differ by less than 5% for k; > 0.015 sec™?, but as k,; drops the peak
decreases rapidly so that it is within a few percent of its limiting value of 1000 secat X,
= 0.002 sec™ L. In the low k, limit, the mass transfer rate &, is sufficiently low relative
to the ume for a mobile molecule to traverse the bed that essentially no adsorption

occurs.

2000 = ——F % e -
7
7
7
-~
£
I
!
!
£
]
s !
©
s !
g ]
; 1507 — [ —
= 1
o
g P
z I
2 i
= i
!
I
1
'y
1015 ¢ L
27 035 : 2
logiok, (sec™}

Fig. 1. The profile peak position is a function of the mass transfer rate (k, or k_,) with K held constant.
The profile mean, on the other hand, is determined only by K. The mean is at 2000 sec, X = 1, A/u = 1000
sec, D = 0.

As the low &, limit is approached an interesting effect arises: the profile begins
to develop a second peak (Fig. 2). Mathematically, this peak arises from the first term
In eqn. 14; physically it represents those particles that traverse the bed with no
adsorption. The theory predicts that such a peak can be produced or eliminated by
changing A/u so that it either approximates or exceeds 1/k,. The rate constant &, can
be determined by methods discussed in ref. 1. Under usual circumstances one would
want to perform separations so that an ““artifactual peak™ does not arise. However, if
the second peak can be produced as readily as the theory suggests, it might be useful.
Iis breadth is free from mass transfer contributions and it therefore allows an assess-
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Fig. 2. The elution profile of 2 completely homogeneous molecular population uader ideal conditions
becomes bimodal when the rate of mass transfer from the void volume to interior bead volume is compara-
bletou/h. D = 107 ° cm?fsec, u = 0.0l cm/sec, b = 10cm, K = L. (@) k; =4 x 107 3sec™};(b)&, =5 x
1073 sec™ L.

ment of the relative contribution of diffusion and mass transfer to the overall profile
dispersion.

HETEROGENEITY

The models formulated and analyzed here and in ref. 1 assume that the mole-
cules are uniform in size, structure and weight and that the beads (gel particles are
uniform in their packing, size and structure. Here we examine the effect of non-
uniformities on the moments of the passage time. Assume that the equilibrium con-
stant X is distributed with probability density funciion n(K). Note that the distri-
bution of K could be due to a distribution of k, or of k_, or of both. The average over
the distribution of X of the jth moment of the passage time at position x is defined as

a

Ty = { n® | OlupotK) + DL (xsK0] de dK (16)
[+] (1]

X



290 C. DeLISL, H. W. HETHCOTE, J. W. BRETTLER

For a small-zone experiment for which diffusion is negligible, the analogs of the
expressions in ref. 1 for the moments are

.= + Khfu, S. = 2(Kik_ Dhfu 17
V.=V, + ¥, W, = 2FV, (Klk_,) (18)

where K = V_/¥, and (K/k_,) is the expected value of K/k_,.

If the main sources of equilibrium constant heterogeneity are non-uniformities
in the -beads or in their packing, then the average equilibrium constant X and the
average penetrable volume ¥, depend only on the column conditions. As long as the
same column is used under the same conditions {for example, during molecular
weight calibration and determination), this non-uniformity does not significantly
affect the results since it is the same for all molecules passing through the column.

If the main sources of equilibrium constant heterogeneity are non-uniformities
in the size, structure or weight of the molecules, then K and Vp are averages over these
molecules. If the sorption rate &, is always the same for the molecules, but the
desorption rate k _, varies because of differences in the molecules, then (K/k_,) =
Ef/kl. In this case, if &, is known (e.g., from another experiment), then the second
momeant X2 can be estimated from the observed varance of the elution profile. Hence
the variance ¥, of the elution profile satisfies

w _2FV, K 2FF,

== B + (K — (R (19)

where the first term in the brackets is the square of the mean of the equilibrium
coustant distribution and the second term is the variance. Thus if &, is constant, both
the means and the variances of the distribution can be estimated.

NON-LINEAR KINETICS

Consider the chromatography model without diffusion for a thin solute zone
described earlier. Assume that the sorption—desorption kinetic rates decrease near
saturation, i.e., the kinetics are no longer linear. Then the egns. 1 and 2 become

L= u - kp( — €/C) + k_iq(t — BIE) 20)
%’ = kpQ — C/C™) — k_,qg(1 — B/B™) @1

wherz the parenthesized factors reflect saturation effects. The mobile and stationary
phase concentrations £ and B are less than the corresponding maximum concenira-
tions.C™ and B™. Since p = CA4,/I and g = ‘BA /I, we find



NON-EQUILIBRIUM MODEL OF LCC. IL 291
C/C™ = ph(I{C™Agh) (22)
B[B™ = gh(I/B™Ah) (23)

where Aok and A h are the void and penetrable volumes, respectively. If the total
number of molecules / is much less than the molecular capacities C" 4,k and B™A4_h,
then a suitable small parameter is

e = If{C"Agh FeZ))
Since K = V,/V,, then
I/B4h = eCTVy[B2V, = ealK (25)

where a = C=/B™ is a constant near 1 since the saturation concentration C™ and 8™

are nearly equal.
Let the expansion of p and ¢ in powers of ¢ be

P + Po + Pi& + prE’ + ...
(26)
q=qo + @18 + g8 ...
Substituting egn. 26 into eqns. 20 and 21 modified to include £ by using eqns. 22-25,

and equating the powers of ¢, we find that p, and g, are given by eqns. 5 and 6 and p,
and g, satisfy

o g ah
—.EL = “‘—{i —k, oy — Bp3) + k_, (‘h - —qﬁ)

Gt cXx K
Doy — ) — k(0 — g2 @7
&t i 1 -1 1 .K

.pl(.‘:,()) = 0, 41(:(30) =0, Pl(h,t) =0
The first-order approximation to the mean elution time is

M, = | tulpy(0,) + gp,(0,0)1dt = (1 + K)(hju) + ;jc tup, (0,0)dt (28)
o

Ol §

tid

Following the procedure in the section “The moments of the clution profile
in ref. 1, we find

? tup, (x,0dt = — 5[1(? hpE(w,0) — %? hq(w,e)dsldw (29)
o - x (¢4 a
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Substituting eqns. 5 and 6 for p, and g, in eqn. 29 and using identities involving
integrals and series!!. we obtain

;E tup, (0,ndt = — (hju) [2 ;;B (1 —e ) — ge™2* + %Ee‘“’lo(w)dw —
(—:—)e“’lf (\/ﬂ) - g } e""Io(w)dw] (30)
- =0

where o = khfuand B = k_,hju.
Nummnerical evaluation of the integral in eqn. 30 indicates that it is well ap-
proximated, over a wide range of «. by

fe "Itw)dw = — 0.1895 + 0.855./« 3D
V]

In particular, this approximation holds to within 6% at« = 0.2; 1% at « = i,and it
becomes increasingly better as « increases. Therefore eqn. 28 can be writien as

2+ -2 -2
M, =1 + K)y(h/u) — z(hfu) T (! —e ™) — qe™ 42
32)
1
—%c-kli (/20) — 5(1 — @) (0.1895 — 0.855 \/Z)}
If x and B are small, with K remaining moderate, the result simplifies to
M= (K () — PR s KO- 20 33)

Combining eqns. 28 and 30 we find that the first-order approximation to the relative
error in neglecting the non-linear kinetics is given by

(M. — ( + K(u) | e [2+8 x
|+ 0w | STxx| a4 T4+ 5 34

Eqgn. 32 predicts that in the non-linear regime, the elution profile mean depends
separately on the mass transfer raies k; and & _,, not just on their ratio XK. Thus with
K held fixed, changes in ¢ = A f/u can cause changss in the mean (see Fig. 3). The
percentage difference between the non-linear and linear means is usually small, gener-
ally not more than 100z. The maximum percentage difference between the non-linear
and linear means is shown in Fig. 4. Note that the linear mean is usually larger than
the non-linear mean. More interesting are the maxima and minima that occur in some
parts of Fig. 3. Fig. 3 clearly illustrates that when the sorpiion—desorption kinetics are
non-linear, the mean is not uniquely determined by the equilibrium constant X, but
depends on the sorption and desorption rate constants k; and X _,.
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Fig. 3. The position of the mean in the non-linear problem is not uniquely determined by K. a = 1 and
£ = 0.1 in 21l igures. (a) K = 2, (b} K = 0.5, (¢) K = 0.08, (d) X = 0.0L
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Fig 4. Maximum deviation between the linear and non-linear means as a function of K. At high K| the
maximum deviation is 109 (1605); at low K it is 2.3 7.

APPERDFX A DERIVATION OF EXPLICFI SOLUTIONS

Eet Ip(x.s} and Lg(x,s)-be the Raplace transforms. of p(x,t)-and g(x;7). From:
eqns: kand 2 wefind that
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6Ep- kk_
e G ?ﬁf—)’:" = =0t — ), Lphs) = 0 35)
Eg(x;sy = kyEpl(s-+ k_,) G6)

The sofution of the initial value problem (eqn. 39) is

_ I —kh—x} sth—-x) Kk (b —x)
Lp(xs) = uexp{ 173 P73 * u(s + k) | G

We will peed the following ELaplace transform formulas!?:

e = L{(a/)'™* |, 2(at)'*’] + &)} (38)
efs = LI, (2a8)*} (39)

Using equs. 36-39 with the usual rules for Laplace transforms, we find the solution
given by eqns. 5 and 6.
For the large-zone model

(1 — e Tsim ~k(h—x) s(h—x) kik_(h— X
Ts exp[ u B u u(s + k_,) ] “0)

Lpix,s) =

Using eqns. 36 and 3840 and standard Laplace transform formulas, eqns. 9 and 10
are obtained. :
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